
Properties of Regular
Languages

A. Every finite language is regular (because we can write a regular
expression for it).

B. The union of two regular languages is regular (if E is a regular
expression for one language and F for another, then E+F is a
regular expression for the union of the two languages.

C. The number of regular expressions is countable (there is only a
finite set of regular expressions of a fixed length n), so the
number of regular languages is countable.

D. The subsets of a regular language are not necessarily regular.

E. Theorem: The complement of a regular language is regular.
Proof: Start with a DFA that accepts the regular language.
"Complete" the DFA by adding a "dead" state and fill in any
missing transition with a transition to the dead state. Now every
string takes the DFA from the start state to some last state, and the
string is accepted if that last state is final. Make a new DFA that
has the same states and transitions as this, but whose final states
are those that aren't final in the original automaton. This
automaton accepts the complement of the language accepted by
the original automaton.

For example, consider the language 00*1. This is accepted by

S T0 U

0

1

We complete this: S T0 U

0

1

dead
1 0,1

0,1

The completed DFA also accepts 00*1.

S T0 U1

dead
1 0,1

0,1

If we take the complement of the final states we get a DFA that
accepts every string not accepted by the original DFA:

Moral: Every cofinite language (i.e., every language whose
complement is finite) is regular.

F. The intersection of two regular languages is regular.
Proof: 𝐿1 ∩ 𝐿2 = 𝐿1

𝑐 ∪ 𝐿2
𝑐 𝑐

G. The difference of two regular languages is regular.
Proof: 𝐿1 − 𝐿2 = 𝐿1 ∩ 𝐿2

𝑐

H. Theorem: If L is a regular language then Lrev, the language
consisting of the reversal of every string in L, is also regular.
Proof: We'll do structural induction over the structure of a regular
expression. This is clearly true for the base cases ∅, 𝜀, and a. Now
suppose that E and F are regular expressions representing L1and L2,
and that Erev and Frev represent the reversals of L1and L2. Then
(E+F)rev = Erev + Frev represent (L1∪ L2)rev.
(EF)rev = FrevErev represents (L1L2)rev

(E*)rev = (Erev)* represents (L1*)rev

Note that a language can be pumpable but still not regular.
For example consider L={aibjck|i,j,k >=0 and if i=1 then j=k}.
L contains strings such as a1b3c3, a2b3c5, etc.

Note that M = {a1bjck} is regular because it is represented by ab*c*. If
L was regular then L∩M would be regular; but L∩M is {a1bjcj} and
that is not regular. So L is not regular.

We can write L = L0∪L1∪L2, where L0={bjck}, L1={abjcj}, and
L2={a2aibjck}. L0 and L2 are regular so they are pumpable. If w=abjcj

is a string in L1, let x=e,y=a, and z=bjcj. Then w = xyz and xynz=anbjcj is
in L for every n. So L is pumpable, even though it is not regular.

